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Abstract— A simple method for the design of linear antenna arrays having independently
controllable sidelobe level and beamwidth is presented. Unlike existing methods that rely on
optimization algorithms, or on a modification of the Chebyshev design method, the proposed
method is based on Taylor one-parameter array design method, which is famous for providing
decaying sidelobes. An equation for the first-null beamwidth of Taylor one-parameter linear
arrays is first derived in terms of the array number of elements, the uniform inter-element spacing,
and the prescribed sidelobe level. A virtual linear array is then designed, using Taylor one-
parameter method, for the desired number of elements and sidelobe level, and for the inter-element
spacing that yields the wanted first-null beamwidth. The array factor of the antenna array under
design, which is probably being worked for a different inter-element spacing, is later equated to
the array factor of the already synthesized virtual array. Finally, using matrix multiplication
and pseudo-inversion, as shown in the presented equations, the excitations of the array under
design can be obtained. These are meant for the prescribed number of elements, inter-element
spacing, sidelobe level and first-null beamwidth. Examples are given to verify the correctness of
the presented method.

1. INTRODUCTION

Conventional Dolph-Chebyshev arrays [1] are known to provide the narrowest beamwidth com-
pared to other antenna array designs, but this comes at the cost of all sidelobes having the same
level, which is the cause for more interference at the far out angles. A modified Dolph-Chebyshev
approach is presented in [2], which enables the relatively independent control of the beamwidth
and sidelobe level (SLL). Herein, the beamwidth control is translated into the enlargement of the
beamwidth to a desired value from the minimum provided by the classic Chebyshev design. With
this aim of adjusting the beamwidth to a larger value, there is no reason to preserve the equal-level
sidelobes in the pattern, and it becomes more advantageous to have a decaying sidelobe pattern.

Other methods for the control of array beamwidth and SLL mostly rely on optimization algo-
rithms like Particle Swarm Optimization [3], Genetic Algorithms [4], and other heuristic optimiza-
tion algorithms [5].

In this paper, the focus is on linear arrays with decaying sidelobes, which are based on Taylor
one-parameter design [6]. The first-null beamwidth (FNBW) of these arrays is derived in terms of
the number of elements, the uniform inter-element spacing, and the SLL. For a desired FNBW, the
corresponding value of the inter-element spacing is determined and is used to synthesize a virtual
linear array also having the wanted number of elements and SLL. The design of this virtual array
is done using the conventional Taylor one-parameter method. For the same number of elements,
FNBW, SLL, and for the initially prescribed inter-element spacing of the array under design (AUD),
which is probably different from the one obtained for the virtual array, the AUD elements excitations
are deduced by equating its array factor to that of the virtual linear array. This involves direct
matrix multiplication and matrix pseudo-inversion, without the need for any optimization.

The rest of this paper is organized as follows. Section 2 presents all the formulas needed for the
design method. Examples are given in Section 3 to validate this method, in addition to comments
on the results. Finally, a conclusion is given in Section 4.

2. FORMULATION

The Taylor one-parameter line-source distribution, which produces decaying sidelobes, and its
corresponding space factor are reported in [7]. The line source is assumed laid along the z-axis.
The space factor is given by:
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and [ is the length of the line source. The constant B is the solution of the following equation:
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where Ry is the ratio of the intensity of the mainlobe to the highest sidelobe.
A discretization of the line-source distribution yields the equation for the elements excitations
of a Taylor one-parameter linear array with uniform inter-element spacing. This is given as follows:
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where n is the index number of each array element, going from —(N —1)/2 to (N —1)/2, N is the
number of array elements (IV is odd for simplicity), and Jy is the Bessel function of the first kind of
order zero. A two-dimensional version of Eq. (1), relevant to a rectangular antenna array, appears
in [8].

The FNBW is derived from the line-source space factor given in Eq. (1) and is used, without
loss of accuracy, for discrete Taylor one-parameter arrays. The two nulls directly next to the main

lobe occur when, from the lower part of Eq. (1), y/u? — (7B)? = 7 radians. This yields two values
of 8, the right-side one being
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whereas the smaller value is
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Taking the difference (O, — 0n;), the following equation for the FNBW of the discrete uniform-
spacing Taylor one-parameter linear array is obtained:
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In the previous three equations, the length of the line source [ is replaced by the equal length of
the discrete array, or (N — 1)d, where d is the inter-element spacing. Clearly, © px depends on the
number of array elements IV, the SLL dictated by the value of B, and on the inter-element spacing
d. X is the wavelength at the frequency of operation. A value of d can be found that results in a
prescribed Oy . This is given by

Opy = 7™ — 2arccos

. (4)

do vVB?%+1

A (N —1)sin (85x) ©)

The remaining part of this section shows how to use Eq. (5) to independently control © px and the
SLL without really having to change the inter-element spacing of the AUD.

The array factor of an N-element uniform-spacing linear array positioned along the z-axis is
given by
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where 6y denotes the angle of the main lobe. Eq. (6) is valid for odd N. In matrix form, and
taking 09 = 0 for simplicity, it can be written as
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In Eq. (7), ais a 1 x N matrix whose elements can be obtained from Eq. (3). P, on the other
hand, is an N x M matrix, where M is the size of the vector of # discretized between —7 and 7.
If the 0 step size is 1 degree, M = 361.

To design an array with N elements, a fixed spacing d, a specified SLL, and a desired Oy, the
following steps should be taken:

1. Solve for B using Eq. (2).

2. Compute a, from Eq. (3). This is the N-element excitations vector of the virtual array. This
set, of excitations guarantees that the virtual array has the SLL as specified. A reminder here
is that the AUD and the virtual array have the same N and same B. So the AUD also has
the same desired SLL.

3. Calculate dg from Eq. (5). This is the inter-element spacing of the virtual array, as a result
of which the virtual array has a FNBW equal to O py.

4. Compute P, from Eq. (8) by replacing d with dg. Now the array factor of the virtual array
is equal to a, x P,.

5. Last, since the array factors of the AUD and the virtual array are the same, the following
equality holds: a x P = a,, x P,. The excitations vector of the AUD is then given by:

a=a, x P, xPL (9)
P! is the pseudo-inverse of P.

3. RESULTS AND DISCUSSION

As a first example, the AUD has the following parameters: N = 15, d = 0.5\ and 6y = 90°. The
wanted SLL is —25dB, so B = 1.0229. Fig. 1 shows the normalized array factor of the conventional
Taylor one-parameter array, which has © py = 23.6°, in addition to those of the arrays designed for
Opny = 35° and Oy = 50°. For the case O pn = 35°, the virtual array has dg = 0.34)\, whereas for
Orn = 50°, dg of the virtual array is equal to 0.242\. The normalized values of the a,, excitations
are given in Table 1 for these three cases.

As a second example, the following are taken: N = 31, d = 0.5, and 0y = 90°. Ry = —35dB, so
B =1.5136. For these parameters, the conventional Taylor one-parameter array has ©py = 13.9°.
For a desired ©py = 45°, the virtual array has dg = 0.158\. For Opy = 80°, dg = 0.094\. The
normalized arrays factors for the conventional case and for © gy = 45° and ©pny = 80° are plotted
in Fig. 2.

In Figs. 1 and 2, the array factors are plotted against 6 going from 0 to 180° only. This is because
in the range —180° < # < 0, the array factors are just the mirror images of these plots. The results
show that the achieved SLLs are slightly smaller than the prescribed levels. This is due to the
approximation of the Taylor line source by a discrete array. This slight difference, which is also
detected in the conventional Taylor method, becomes more negligible when N increases. Referring
to Table 1, a negative a,, means an excitation that is 180° out of phase with a positive counterpart.
The data in this table shows that as the desired beamwidth gets wider, the proposed design method
tends to assign smaller excitations to the array’s edge elements, and these excitations could become
zero. This makes sense since arrays with a smaller number of elements offer a wider beamwidth. As
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a final note, the presented method cannot achieve a FNBW smaller than that of the conventional
Taylor one-parameter, for the specified SLL. As with the modified Chebyshev method in [2], the
independent control of the beamwidth means the ability to independently enlarge the beamwidth
beyond the minimum achieved by the conventional method.
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Figure 1: Normalized array factors of 15-element  Figure 2: Normalized array factors of 31-element
linear arrays all designed for —25dB SLL: the first linear arrays all designed for —35dB SLL: the first
is a conventional Taylor one-parameter, while the is a conventional Taylor one-parameter, while the
second and the third are designed for 35° and 50° second and the third are designed for 45° and 80°
FNBW, respectively. FNBW, respectively.

Table 1: The normalized a,s for the arrays of Example 1.

QAp ®FN = 23.6° @FN = 35° ®FN = 50°
(Taylor 1-param)

ap 1 1 1

a_1 =a 0.973 0.934 0.886

a_g = ag 0.896 0.786 0.609

a_3 = as 0.777 0.555 0.276

a_yg = a4 0.629 0.338 0.0124

a_5 = as 0.469 0.0972 —0.0012

a_¢ = Qg 0.312 —0.015 0.0002

a_7 = ay 0.172 0.009 0

4. CONCLUSION

A simple method for the design of linear antenna arrays with independently controllable sidelobe
level and beamwidth was presented. The array factor was written as a matrix product. The method
first synthesized a virtual array with a specifically computed inter-element spacing to obtain the
desired beamwidth, and using the Taylor one-parameter method to guarantee the specified sidelobe
level. A formula for the inter-element spacing in terms of the wanted beamwidth was derived for
Taylor one-parameter arrays. With the array under design possibly having a different inter-element
spacing, matrix multiplication and pseudo-inversion were required to obtain its excitations. This
method led to array factors with decaying sidelobes, which is an advantage, and did not require
the use of optimization techniques. Examples were given and were followed by a discussion.
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