Medical Research Program

About

Heart failure affects 1-2% of the adult population in developed countries, increasing to ≥10% in people aged 70 and over. There are numerous underlying causes of heart failure, including vascular heart disease, high output states and disease of the heart muscle (myocardial disease).

Our research team includes medical doctors, electrical and computer engineering professors, and researchers focused on developing technologies to aid in medical diagnosis. The collaboration between multi-disciplinary team-mates from the cardiology department of the American University of Beirut Medical Center (AUBMC), the electrical and computer engineering department at the American University of Beirut (AUB), and researchers from BRIC aims to improve the machine learning outcome for the diagnosis of cardiovascular diseases.

Research Goals

Our group has been working extensively over the last period to develop machine learning based models that incorporate clinical history, electrocardiography (ECG) and echocardiography features to differentiate ischemic from non-ischemic heart failure.

We test different classification algorithms to investigate the value of cardiac strain parameters in predicting the type of myocardial disease; and the value of strain data with or without ECG data to predict type of myocardial disease. If the strain data and other features are used to predict the type of myocardial disease (e.g. ischemic or non-ischemic) using a classification algorithm, this would lead to more rapid elucidation of specific underlying diagnosis by guiding subsequent investigations, e.g. angiography or genetic testing. This would mean:

1- fewer investigations, which would be beneficial for the patient’s well-being and the efficient use of hospital resources and funds
2- a faster diagnosis, meaning appropriate management can be commenced sooner. Furthermore, if the used classification models along with the input data predict outcome and/or specific diagnosis more accurately than previous works, a relevant tool could be developed in which strain and other relevant data could be input to predict diagnosis, guiding investigation and management, thus, improving treatment for patients and their families.


Echocardiography Image of the Heart with strain curves
Researchers

Alumni

Dr. Abbas Ballit

Researcher

Phone::+961-1-653177/142

Email: abbass.ballit@lebcsr.org

Website::www.lebcsr.org

 

 

 

 


Biography

Abbass Ballit is an electrical and electronics engineer graduated from the faculty of engineering in the Lebanese university in 2012, and then, in 2013, he received his Master 2 degree in “industrial control” from the “Ecole Doctoral des Sciences et de la Technologie” in the Lebanese university, cotutelle with the UTC (Univérsité de Technologie de Compiègne) in France.

After working in the construction field for several years, he decided to start his PhD. He started the researches in 2017 in the UVSQ (Université de Versailles Saint-Quentin-en-Yvelines) in Versailles, France. His project subject is about developing a novel fabrication process of the lower limb prostheses, especially the socket, to replace the currently used artisanal and subjective methods, to reduce the production time and cost of these products.

Abbass’s research interests include biomechanics, study and simulate the behavior of viscoelastic material such as soft tissues of human body, measurement of material elastic properties using different techniques such as ultrasound scan or mechanical indentation, parallel programming, optimization algorithms including machine learning systems and genetic algorithm.. 3D object modeling, manipulation, and dynamic simulation.

Journal papers:
– The IRBM journal paper attached as “IRBM_AB.pdf“, and can be found at the following link: https://doi.org/10.1016/j.irbm.2020.02.003
– The IEEE Sensors journal paper attached as “IEEE_AB.pdf“, and can be found at the following link: https://doi.org/10.1109/JSEN.2020.3011172

Elissa Makhlouf

Engineer

Phone::

Email:

Website:

 

 

 

 


Biography

Elissa received her bachelor degree in Telecommunications and Computer Engineering in 2021 from the Lebanese University. She accomplished at BRIC her final year project entitled “Holter software to analyze long ECG records using machine learning”. She introduced in this project a novel technique for classifying different types of arrhythmic heartbeats. Her proposed technique relies on deep learning for extracting features from ECG records in order to make the classification possible.

FINAL YEAR PROJECT Report

Elias Nohra

Engineer

Phone::

Email:

Website:

 

 

 

 


Biography

FINAL YEAR PROJECT Report

Fares El Khoury

Engineer

Phone::

Email:

Website:

 

 

 

 


Biography

FINAL YEAR PROJECT Report

Portfolio

Brief

Heart failure affects 1-2% of the adult population in developed countries, increasing to ≥10% in people aged 70 and over.
Our research team includes medical doctors, electrical and computer engineering professors, and researchers focused on developing technologies to aid in medical diagnosis.
We have been working extensively to develop machine learning based models that incorporate clinical history, electrocardiography (ECG) and echocardiography features to aid in the medical diagnosis and prognosis for heart related diseases especially Ischemia and Congestive Heart Failure.

ECG Digitization

ECG or EKG is considered as the most practiced method for the diagnosis of heart abnormalities.
To benefit from the printed ECGs of old cohorts of rare diseases, we transform the ECG signal, either scanned or printed, to the raw digital (time, mV) form.
ECG digitization Video

Ischemia Prediction

Machine learning allows for improved accuracy in predicting the need for coronary angiography for the diagnosis of ischemic cardiomyopathy.
A cohort of 204 consecutive patients with reduced ejection fraction (EF<50% on echocardiography) with clinical, ECG and echocardiography (including speckle tracking) variables.
We tested several classification algorithms and determined the most relevant variables. These included regional wall motion, the right bundle branch block, in addition to the post-systolic shortening and its deceleration time.
The incorporation of these tools in electronic systems as well as others will facilitate patient care.
Developed a web-based application to predict ischemia, available at:
https://lebcsr.org/ischemia_prediction.html

Retinal Video Analysis for Neurocam

Winner of the First Place Position in Stars of Science Season 10 – (Neurocam Dr. Walid Albanna)
Neurocam is a novel portable device to monitor and analyze retinal vessels with the objective to provide early detection of the brain stroke for patients in emergency care units suffering hemorrhage.
Comprehensive Image/Video Processing Software with several capabilities to achieve an automated retinal vessel analysis.
Software provides auto-brightness and auto-focus abilities with a semi-automated positioning system.
Software automatically detects the regions of interest which are part of the main retinal vessels.
Software performs a measurement of the vessels dilation/contraction over a 6 minutes period which helps the medical examiner asses the possible early stroke and provides a decision to help the examiner.
BRIC provided mentoring and technical support (video and image processing) for Neurocam

SmartEx exhibition

This year, BRIC participated in the SmartEx exhibition that was held from April 25-28, 2018, at the Forum De Beyrouth. As an exhibitor this year, BRIC showcased its latest work in technological innovation, as well as social development.
Publications
[5] Ahmad, Ali, Shareef Mansour, Ali Zgheib, Lise Safatly, Ali El Hajj, Mohammed Baydoun, Hassan Ghaziri, Hussam Aridi, and Hussain Ismaeel. "Using Artificial Intelligence to Uncover Association of Left Atrial Strain with the Framingham Risk Score for Atrial Fibrillation Development." Journal of the American College of Cardiology 75, no. 11S1 (2020): 455-455.
Available at: https://www.jacc.org/doi/full/10.1016/S0735-1097%2820%2931082-2

[4] The IRBM journal paper attached as IRBM_AB.pdf, and can be found at the following link: https://doi.org/10.1016/j.irbm.2020.02.003

[3] The IEEE Sensors journal paper attached as IEEE_AB.pdf, and can be found at the following link: https://ieeexplore.ieee.org/abstract/document/9146119/

[2] Mohammed Baydoun, Lise Safatly, Hassan Ghaziri, and Ali El Hajj. "Analysis of heart sound anomalies using ensemble learning." Biomedical Signal Processing and Control 62 (2020): 102019.
Available at: https://www.sciencedirect.com/science/article/pii/S1746809420301750
Highest Accuracy in PCG classification: https://archive.physionet.org/users/shared/challenge/2016/top-results.shtml

[1] Mohammed Baydoun, Lise Safatly, Ossama K. Abou Hassan, Hassan Ghaziri, Ali El Hajj, and Hussain Isma’eel. "High Precision Digitization of Paper-Based ECG Records: A Step Toward Machine Learning." IEEE Journal of Translational Engineering in Health and Medicine 7 (2019): 1-8.
Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8894038